Surfactant and temperature effects on paraben transport through silicone membranes.

نویسندگان

  • Laura J Waters
  • Laura Dennis
  • Aisha Bibi
  • John C Mitchell
چکیده

This study investigates the effects of two surfactants (one anionic and one non-ionic) and controlled modifications in temperature (298-323K) on the permeation of two structurally similar compounds through a silicone membrane using a Franz diffusion cell system. In all cases the presence of an anionic surfactant, namely sodium dodecyl sulphate (SDS), reduced the permeation of both compounds (methylparaben and ethylparaben) over a period of 24h. The degree of permeation reduction was proportional to the concentration of surfactant with a maximum effect observed, with an average reduction of approximately 50%, at the highest surfactant concentration of 20mM. Differences were seen around the critical micelle concentration (CMC) of SDS implying the effect was partially connected with the favoured formation of micelles. In contrast, the presence of non-ionic surfactant (Brij 35) had no effect on the permeation of methylparaben or ethylparaben at any of the concentrations investigated, both above and below the CMC of the surfactant. From these findings the authors conclude that the specific effects of SDS are a consequence of ionic surfactant-silicone interactions retarding the movement of paraben through the membrane through indirect modifications to the surface of the membrane. As expected, an increase in experimental temperature appeared to enhance the permeation of both model compounds, a finding that is in agreement with previously reported data. Interestingly, in the majority of cases this effect was optimum at the second highest temperature studied (45°C) which suggests that permeation is a temperature-dependent phenomenon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective Mass Transport of CO2 Containing Mixtures through Zeolite Membranes

In this work, the main aspects regarding the permeation of mixtures containing CO2 and permanent gases such as H2 , N2 and CH4 through zeolite membranes have been investigated, focusing on the description of the mass transport mechanisms taking place inside the pores. First, a brief overview about the performance of the main zeolite membranes used in gas separation (e.g. DDR, CHA, AEI, FAU, etc...

متن کامل

Selective and Efficient Ligandless Water-in-Oil Emulsion Liquid Membrane Transport of Thorium(IV) Ions

The present paper concerns on the selective and very efficient transport of thorium(IV) ions from aqueous solutions through an emulsion liquid membranes composed by paraffin and a surfactant, without carrier requirement. The influence of pH of the external aqueous phase, the surfactant concentration in the membrane phase, the type, and concentration of th...

متن کامل

Preparation and Investigation of Poly (N-isopropylacrylamide-acrylamide) Membranes in Temperature Responsive Drug Delivery

Objective(s) Physiological changes in the body may be utilized as potential triggers for controlled drug delivery. Based on these mechanisms, stimulus-responsive drug delivery has been developed. Materials and Methods In this study, a kind of poly (N-isopropylacrylamide-acrylamide) membrane was prepared by radical copolymerization. Changes in swelling ratios and diameters of the membrane wer...

متن کامل

A molecular dynamics simulation of water transport through C and SiC nanotubes: Application for desalination

In this work the conduction of ion-water solution through two discrete bundles of armchair carbon and silicon carbide nanotubes, as useful membranes for water desalination, is studied. In order that studies on different types of nanotubes be comparable, the chiral vectors of C and Si-C nanotubes are selected as (7,7) and (5,5), respectively, so that    a similar volume of fluid is investigated ...

متن کامل

A molecular dynamics simulation of water transport through C and SiC nanotubes: Application for desalination

In this work the conduction of ion-water solution through two discrete bundles of armchair carbon and silicon carbide nanotubes, as useful membranes for water desalination, is studied. In order that studies on different types of nanotubes be comparable, the chiral vectors of C and Si-C nanotubes are selected as (7,7) and (5,5), respectively, so that    a similar volume of fluid is investigated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Colloids and surfaces. B, Biointerfaces

دوره 108  شماره 

صفحات  -

تاریخ انتشار 2013